Na-> Template ->Edit #navbar-iframe { height: Opx; visibility: hidden; display: none; }

Tuesday, 13 May 2008

Hydraulic pump


Hydraulic pump




An exploded view of an external gear pump.

Hydraulic pumps supply fluid to the components in the system. Pressure in the system develops in reaction to the load. Hence, a pump rated for 5,000 psi is capable of maintaining flow against a load of 5,000 psi.

Pumps have a power density about ten times greater than an electric motor (by volume). They are powered by an electric motor or an engine, connected through gears, belts, or a flexible elastomeric coupling to reduce vibration.

Common types of hydraulic pumps to hydraulic machinery applications are;

  • Gear pump: cheap, durable, simple. Less efficient, because they are constant displacement, and mainly suitable for pressures below 20 MPa (3000 psi).
  • Vane pump: cheap and simple, reliable (especially in g-rotor form). Good for higher-flow low-pressure output.
  • Axial piston pump: many designed with a variable displacement mechanism, to vary output flow for automatic control of pressure. There are various axial piston pump designs, including swashplate (sometimes referred to as a valveplate pump) and checkball (sometimes referred to as a wobble plate pump). The most common is the swashplate pump. A variable-angle swash plate causes the pistons to reciprocate.
  • Radial piston pump A pump that is normally used for very high pressure at small flows.

Piston pumps are more expensive than gear or vane pumps, but provide longer life operating at higher pressure, with difficult fluids and longer continuous duty cycles. Piston pumps make up one half of a hydrostatic transmission.